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In order to investigate the effect of partial and/or total 
insertion of an aromatic residue between base pairs on the 
tertiary structure of DNA, the following compounds were 
synthesized. It is reasoned that at low values of n, total in­
sertion of the aromatic ring of I may not occur. On the 

X 

(CH2)„N(CH3)2(CH2)3N(CH3)3 • 2Br-

I 

X = H;. Kn = 1); 2(n = 2); 3(n = 3); 4(n = 4) 
X = NO2; 5(n = 1);' 6(n = 2); 7(n = 3); &'n = 4) 
X = CH3; 9 ( n - 2 ) 

other hand, at higher values of n and in the presence of 
para substituents, i.e., NO2 and/or CH3 groups, the aro­
matic ring may fully insert itself between base pairs of 
DNA to cause a net increase in the helix length (Figure 3). 
The results of our studies are consistent with the above in­
terpretation. 

Effect of Aromatic Cations on the Tertiary Structure of 
Deoxyribonucleic Acid1 

Lou Kapicak and E. J. Gabbay*2 

Contribution from the Department of Chemistry, University of Florida, 
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Abstract: The synthesis of several aromatic substituted diammonium cations and their interaction specificity with DNA have 
been examined. The results of the temperature-dependent proton magnetic resonance (pmr), viscometric, and melting tem­
perature studies are presented. It is found that significantly different effects on the tertiary structure of DNA may be caused 
by slight modifications in the aromatic substituted diammonium cations. A "wedge" model is proposed whereby the aromat­
ic ring of the latter is either "partially" or "fully" inserted between base pairs thus leading to either a decrease or increase, 
respectively, in the effective length of the DNA helix. 
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Figure 1. The partial proton magnetic resonance spectra of several cations I in the absence (lower spectrum) and presence (upper spectrum) of soni­
cated salmon sperm DNA at 55°. 

Material and Methods 

Analyses were performed by Atlantic Microlab, Inc., Atlanta, 
Ga. Infrared spectra were recorded on either a Perkin-Elmer 
Model 337 or a Perkin-Elmer IR-IO. Pmr spectra were recorded 
on Varian A-60 spectrometer equipped with a variable-tempera­
ture probe. Viscosity studies were performed with a low-shear 
Zimm viscometer from Beckmann Instrument Co. Ultraviolet and 
visible absorption measurements were recorded on either a Cary 15 
or a Gilford 240 spectrophotometer. DNA melting studies were 
carried out as previously described.1' Compounds 1-9 were synthe­
sized from appropriate starting materials (Aldrich Chemicals) ac­
cording to the following scheme. All final products were chromato-
graphed on silica gel and recrystallized. The elemental analyses 
and proton magnetic resonance spectra are found to be consistent 
with the assigned structures. 

H-OO, H2O 
1 

H2, Pd/C CH3CHjOH 

(CH,)„NH2 (CH2)„N(CH3)2 

Salmon sperm DNA was obtained from Worthington Biochemi-
cals (8BA, ep260 6500) and is found to contain less than 0.2% pro­
tein as estimated by fluorescamine reaction.12,13 

Results 

Pmr Studies. Temperature-dependent pmr studies of the 

free and DNA-bound reporter molecules in D2O were con­
ducted according to previously published procedure" using 
20 and 80 mM of reporter and DNA-phosphate per liter, 
respectively, at pD of 7.0 ± 0.1. 

It should be emphasized that although the binding affini­
ties, A^3, of the dications 1-9 to DNA have not been mea­
sured, it is safe to assume that it is >1000 since the binding 
affinity of the unsubstituted dication, 1,3-propanediamine 
dihydrochloride, is approximately 3.4 X 103.14 Under the 
experimental conditions of the pmr experiment, i.e., 20 and 
80 mmol of I and DNA-P/1., respectively, it can be shown 
via simple calculation that the dications, 1-9, are bound to 
the extent of >98% if K^> 1000. 

Figure 1 shows the typical spectra obtained at 55° with 
compounds 1, 5, 7, and 9 in the presence and absence of 
sonicated (mol wt < 500,000) salmon sperm DNA. The re­
sults of the pmr studies for compounds 1-9 are summarized 
in Table I. It should be noted that considerable broadening 
and upfield chemical shift, A<5 Hz, of the pmr signals of the 
aromatic protons of I is observed in the presence of DNA. 
In addition, the extent of upfield chemical shift and signal 
broadening increases as follows. For compounds 1-4, where 
X = H, the upfield chemical shift, AeS Hz, increases as n 
(the number of methylene carbons between the aromatic 
ring and the adjacent quaternary ammonium group) in­
creases from 1 to 4 in the presence of DNA at 37 and 55° 
(Table I). Similar results are also obtained with heat-dena­
tured DNA. 
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Figure 2. (a) The effect of increasing concentrations of cations I on the relative specific viscosity of near infinitely dilute solution of salmon sperm 
DNA. (b) Normalization of the data presented in (a) with respect to the relative specific viscosity of DNA-10 complex, the ionic standard. 

For the p- nitrophenyl-substituted cations 5-8, the pmr 
signals of aromatic protons of the ortho and meta protons 
(which appear as an AA'BB' pattern for the free com­
pounds) are observed to be extensively broadened in the 
presence of DNA. More specifically, the AA'BB' pattern 
for the aromatic protons cannot be observed for n = 2, 3, 
and 4 (Figure 1, Table I). However, for n = 1, i.e., com­
pound 5, broadened and chemically upfield shifted pmr sig­
nals are observed in the presence of DNA. It should be 
noted that the pmr signals of the protons adjacent to the 
NO2 group of 5, i.e., the ortho protons, are observed to un­
dergo a higher upfield chemical shift (A<5 = 10 Hz at 37°) 
than the corresponding meta protons (A<5 = 6 Hz) in the 
presence of DNA. Similar results are also observed at high­
er temperature, i.e., 55° with native DNA and at 37° with 
denatured DNA (Table I). It should be noted that the total 
line broadened pmr signals which are observed at 37° for 
the aromatic protons of 6-9 in the presence of denatured 
DNA are not surprising since at this temperature the latter 
is known to have considerable secondary structure, i.e., 
stacked single-stranded helix. Thus, insertion of the aro­
matic rings of I between bases of denatured DNA would 
not only lead to totally broadened pmr signals (because of 
slow exchange and/or slow tumbling rates) but could also 
result in upfield chemical shifts due to aromatic ring cur­
rents of the neighboring bases. 

For the p- tolyl-substituted dication 9, the pmr signals of 
the aromatic and />-CH3 protons are not observed in the 
presence of native DNA at 37°. However, at the higher 
temperature, 55°, the pmr signals of the aromatic and 
CH3-group protons appear broadened and upfield shifted 
by 21 and 5 Hz, respectively (Figure 1). By comparison, the 
pmr signal of the aromatic protons of unsubstituted analog 
of 9, i.e., dication 3, can still be observed at 37° and is up­
field shifted by 10 Hz at 55°. 

Viscometric Studies. The effect of increasing concentra­
tions of compounds 1-9 and the parent unsubstituted dica­
tion, (CH 3 ) 3 N + (CH 2 )3N + (CH 3 ) 3 (10), on the relative spe­
cific viscosity of the DNA solution, ??SpcornPiex/'?spDNA, is 
shown in Figure 2a. It is noted that increasing concentra­
tions of the parent dication 10 cause a decrease in the 7?sp of 
DNA solution. A more pronounced decrease is observed in 
the presence of the unsubstituted phenyl dications 1-4 
(where n = 1-4, X = H) and the p-nitrophenyl dication 5 
(where n = 1). On the other hand, the />-nitrophenyl dica­
tions 6-8 and the /?-CH3-phenyl dication 9 cause an in­
crease in the relative specific viscosity, 7?SpDNA"x/'?spDNA-
Figure 2b shows the viscometric data normalized with re­
spect to the parent dication, 10, i.e., a plot of 

Table I. Chemical Shifts (Hz) from DSS at 60 MHz of the 
Aromatic Protons of Free and DNA-Bound Dication Systems of 
Variable Temperature11 

Dication 
T. 
C AS/ 

+ DNA 
+ DNA 
+ d-DNA 

3 
+ DNA 
+ DNA 
+ d-DNA 

4 
+ DNA 
+ DNA 
+ d-DNA 

37 
37 
55 
37 
37 
37 
55 
37 
37 
37 
55 
37 

455 
451 
450 
446 
442 
434 
432 
428 
440 
431 
428 
424 

10 
14 

9 
12 
16 

Dication 
T. 
CC ASi AS2 

5 
5 + DNA 
5 + DNA 
5 + d-DNA 

6 . 7 . 8 
6. 7. 8 + DNA 
6. 7, 8 + DNA 
6, 7, 8 + d-DNA 

37 
37 
55 
37 
37 
37 
55 
37 

503 
493 
491 
485 

(493-491) 
e 
e 
e 

469 
463 
461 
458 

(450-448) 
e 
e 
e 

10 
12 
18 

6 
8 

11 

Dication 

9 
9 + DNA 
9 + DNA 

T. 
C 

37 
37 
55 

Si 

441 
e 

420 

S / 

142 
e 

137 

AS, 

21 

AS3 

5 

o 2,2-Dimethyl-2-silapentanesulfonic acid. b Chemical shift of 
phenyl aromatic protons. c Difference in chemical shifts of the 
phenyl aromatic protons. d Si and S2 represent the lower and higher 
portions of the AA'BB' signal for the aromatic protons of the p-
nitro-substituted aromatic rings. " The proton signal is not dis­
tinguishable from base-line noise. f S3 is the chemical shift of the 
aromatic methyl protons. AU spectra were taken on a Varian A60A 
spectrometer equipped with a variable-temperature probe. Soni­
cated salmon sperm DNA was used at 0.16 M of DNA-P/1. in D2O 
at pD of 7.0 ± 0 . 1 . Denatured DNA (d-DNA) was obtained by 
heating native DNA at 100° for 10 min followed by quenching in 
ice-water at 0°. 

'7sp D N A _ i / ' ?sp D N A " 1 0 vs. the concentrat ion of I. 
Melting Temperature Studies. The effect of the dications 

1-10 on the Tm of the helix-coil transition is shown in 
Table II. It is noted that in all cases a net stabilization of 
the helix occurs. In addition, it is found that dications 6-8 
(p-nitrophenyl, n = 2-4) cause a greater stabilization of the 
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Table II. Effect of Various Concentrations of the Dications 1-10 
on the Tm of the Helix-Coil Transition of Salmon Sperm DNA" 

-Ar1n,
 0C-

System 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

20 p.M 

4.3 
3.1 
3.1 
3.3 
5.9 
7.4 
7.3 
7.8 
4.0 
3.0 

4 O M M 

6.5 
5.3 
5.0 
5.5 
7.5 

10.2 
10.4 
11.4 
5.1 
4.6 

" Arn, = Tm — T,„„, where Tm and Tm„ are the melting temperatures 
in the presence and absence of 1-10. 7"m studies were carried out 
in 10 mM 2-(/V-morpholino)ethanesulfonate (Mes) buffer (pH 6.2) 
and 5 m/V/ Na~ using 60 ^mol of DNA-P/). and 20 and 40 ,umol 
of 1-10. r,„„ is found to be 61.5 ± 0.3 °. 

helix than unsubstituted phenyl dications 1-4 (where n = 
1-4) and the p-nitrophenyl cation 5 (where n = 1). The Tm 

studies were carried out using 60 ixM salmon sperm DNA-
P/l. and 20-40 ^M of the dications 1-10. 

Discussion 

Proton Magnetic Resonance Studies. The line widths and 
chemical shifts of the pmr signals of a small molecule 
bound to a macromolecule often reveal considerable infor­
mation concerning the nature of the binding process. For 
example, three types of binding may be distinguished. Type 
I binding, which is characteristic of a rigid macromolecule-
small molecule complex, leads to a total line broadening of 
the pmr signals. This effect has been observed for molecules 
which intercalate between base pairs of DNA.15-16 In such a 
case, the small molecule experiences strongly restricted 
tumbling in the DNA complex, leading to an unaveraged 
chemical shift of the individual protons and total line 
broadening.17 The p-nitrophenyl dications 6-8 (n = 2-4) 
exhibit this type of behavior in the presence of native DNA 
at 37 and 55°. The />-tolyl dication 9 also shows totally 
broadened pmr signals of the aromatic and p - C H 3 protons 
at 37° (Table I). 

Type II binding, which is characteristic of molecules ex­
hibiting a line broadened pmr signal as well as an upfield 
chemical shift, is noted with the unsubstituted phenyl dica­
tions 1-4 and the p- nitrophenyl dication 5 (n = 1). Such 
effects have also been observed for peptides and peptide 
amides which contain an aromatic amino acid near the C 
terminus of the peptide, e.g., L-Lys-L-PheNH2, L-Lys-L-
TyrNH2 , and L-Lys-L-TrpNH2,"'12 upon binding to DNA. 
It should be noted that this effect may arise by two distinct­
ly different mechanisms, i.e., (1) weak restriction of molec­
ular tumbling of the aromatic ring in the DNA complex 
and/or (2) slow rate of exchange between the various DNA 
binding sites and the unbound state.17 The latter mecha­
nism is highly unlikely since it has been shown that the ki­
netics of the on-rate18 and off-rate19 of a DNA intercalat­
ing molecule (which is structurally related to the dications 
1-10), i.e., the naphthylimide dication 11, is substantially 
faster than the pmr time scale. For example, the half-life 
for the formation and dissociation of the D N A - I l complex 
is found to be <0.1 msec. 

Type III binding to DNA is noted for molecules which 
have a high affinity to nucleic acids but exhibit no line 
broadening and upfield chemical shift of the pmr signals. 
Among these are the polyammonium salts including the 
dication 10, i.e., R 3 N + (CH 2 ) „N + R 3 -2B r - , where R = H, 

(CH2), 

+N(CH3)2(CH2)3N(CH3)3-2Br-

11 

CH3 , and n = 2-6,20 and the oligopeptides which contain 
the simple aliphatic and polar amino acids, e.g., glycine, 
lysine, histidine, serine, etc.1 ' 

In summary, the pmr data indicate that the p-nitrophen-
yl dications 6-8 and the p-tolyl dication 9 exhibit type I 
binding to DNA which is characteristic of restricted molec­
ular tumbling and is consistent with an intercalation mode 
of binding. The viscometric titration studies (discussed 
below) are consistent with the above interpretation since it 
is found that the same dications which exhibit type I bind­
ing, i.e., 6-9, also cause an increase in the specific viscosity, 
r)sp, of the DNA solution which is indicative of a net in­
crease in the helix length. 

The pmr results obtained with DNA complexes of dica­
tions 1-5, which show a broadened and chemically upfield 
shifted pmr signals of the aromatic ring protons, i.e., type 
II binding, are very revealing. For example, as the number 
of methylene carbons, n, increases from 1 to 4 (i.e., com­
pounds 1-4), the upfield shift, AcS, increases from 5 to 12 
Hz in the DNA complex at 55°. Similar results are also ob­
tained with native DNA and denatured DNA at 37°. The 
results are consistent with the interpretation that as n in­
creases, the geometrical flexibility of the phenyl ring of the 
dications 1-4 is enhanced to allow the latter to stack with 
DNA bases and experience a ring current anistropy ef­
fect.17 However, the data indicate that merely increasing n 
is not sufficient to obtain total insertion between base pairs 
of DNA, e.g., the pmr results obtained with « = 3 and 4 
are nearly identical. In other words, total insertion which is 
being defined as characteristic of an intercalation mode of 
binding would lead to restriction of molecular tumbling and 
enhanced viscosity of the DNA solution. Neither effects are 
observed with the unsubstituted dications 1-4 and the p-
nitrophenyl dication 5 (where n = 1). On the other hand, 
the presence of a para substituent on the aromatic ring and 
where n > 1, i.e., compounds 6-8 (« = 2, 3, 4 and P-NO 2 

substituent) as well as the dication 9 (« = 2 and/7-CH3 sub­
stituent), appear to be necessary conditions for total inser­
tion. Figures 3 and 4 schematically illustrate the two types 
of postulated binding: (1) type I (full insertion exhibited by 
molecules which cause a net increase in the helix length, 
i.e., "classical" intercalation mode of binding) and (2) type 
II (partial insertion exhibited by molecules which cause a 
net decrease in the helix length, i.e., "nonclassical" interca­
lation mode of binding). The observations that peptides 
which contain aromatic amino acids, e.g., Phe, Tyr, and 
Trp, exhibit only type II binding to DNA suggest that in­
sufficient flexibility is available to the aromatic ring to un­
dergo total insertion between base pairs."-12 

Viscometric Studies. In order to compare the effect of the 
dications 1-10 on the hydrodynamic property of DNA, at­
tempts were made to determine the intrinsic viscosity, [TJ], 
of the complexes. However, the results are found to be uni-
formative since the value of the intrinsic viscosity at infinite 
dilution in the presence of other molecules will and does ap­
proach the value of the intrinsic viscosity of free DNA at in­
finite dilution; i.e., since the binding constant of the small 
molecule to DNA is finite, the complex will be dissociated 

Journal of the American Chemical Society / 97:2 / January 22, 1975 



407 

Vc 
0 _ P>-c 

/ "O-P 

D-s ' 

D-Sv 
D-s' 

P - O N 

N 
P-O" 

P-O" 

Figure 3. Schematic illustration of a segment of DNA duplex (a) which can either partially intercalate a molecule to give structure b or fully inter­
calate a molecule to give structure c. These two processes will either decrease or increase, respectively, the effective length of the DNA duplex. 

at the lower concentrations. Instead, the effect of increasing 
concentrations of the dications I on the 7)sp of DNA solution 
at near infinite dilution of the latter, i.e., at 47.5 \iM 
DNA-P/L, was studied (Figure 2). In order to interpret 
these data, it is important to note that the ?;Sp of a DNA so­
lution is inversely dependent on ionic strength.21 Presum­
ably, the effect is due to shielding of neighboring negatively 
charged phosphate groups by the positively charged coun-
terions which would lead to electrostatic constriction of the 
DNA polymer. Such an effect is observed for the parent 
dication 10 as well as the other dications 1-9 (Figure 2a). 
In order to correct for the electrostatic constriction due to 
ionic strength and to compare the effect of increasing con­
centration of the dications 1-9 on the rjsp of DNA, the vis-
cometric titration data were normalized with respect to the 
parent compound 10. The results shown in Figure 2b indi­
cate that the dications I may be divided in two groups. 
Group A dications show an increase in the r]sp of DNA solu­
tion, e.g., compounds 6-9. Group B dications (1-5) show a 
decrease in the 77sp of DNA which cannot be explained on 
the basis of an ionic effect alone. It should be noted that 
group A dications not only show an increase in the i7sp of 
DNA but also exhibit total line broadening of the pmr sig­
nals of the aromatic protons in the native DNA complex 
(Table I). On the other hand, group B dications, which 
cause a greater decrease in the r]sp of DNA than the parent 
compound 10, exhibit line broadening and upfield shift of 
the pmr signals of the aromatic protons in the DNA com­
plex. Since the viscometric study was carried out at near in­
finite dilution of the DNA, the relative values of the ratio of 
ijsp of the DNA-I complex to the TJSP of the DNA-IO com­
plex (rjsp

 DN^~'/'?spDNA~10) are close approximations of the 
relative values of the intrinsic viscosity of DNA-I to DNA-
10 complexes ([r,]DNA-1 /[V]D"A-10).22'23 In addition, it is 
well known that the intrinsic viscosity of a rod-like polymer, 
such as DNA, increases with increasing length.23 It is 
therefore reasonable to conclude that group A dications in­
crease the effective length, and group B dications decrease 
the effective length of the DNA helix. Figures 3 and 4 illus­
trate these effects, i.e., lengthening of the helix as a result 
of intercalation of group A dications and shortening of the 
effective length of the helix as a result of partial intercala­
tion of group B dications. The latter effect is presumably 
due to bending of the helix as a result of partial insertion of 
the aromatic ring of group B dications between DNA base 
pairs. The above hypothesis, i.e., bending of the helix at the 
intercalation sites, has also been invoked to account for the 
interaction of peptides containing aromatic amino acids11*12 

as well as other aromatic cations.16 

Melting Temperature Studies. The effect of the dications 
1-10 on the melting temperature, Tm, of the helix-coil 
transition of DNA was studied, and the results are summa­
rized in Table II. Two points may be made from these data. 
(i) The dications are found to stabilize the DNA helix 
toward heat denaturation. (ii) Group A dications 6-8 (with 
the exception of the dication 9) are found to increase the 
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Figure 4. Two-dimensional schematic representations illustrating the 
decrease in helical length due to partial intercalation of an aromatic 
molecule. Structure a represents a unit length of helix. Structure b rep­
resents that same unit length of helix with consecutive 10° helical 
bends in the same direction. Structure c represents that unit length of 
helix with consecutive 10° helical bends of opposite direction. Hence b 
and c represent maximum and minimum effects, respectively. 

Tm of the DNA to a greater extent than the corresponding 
group B dications 1-5. Unfortunately, it is not clear how to 
interpret the Tm data since they are complicated by the fact 
that they involve relative interaction of the dications I with 
the helix and the random coil. However, it may be signifi­
cant to note that the Tm data are consistent with pmr and 
viscometric studies in at least one respect, i.e., it also differ­
entiates between the effects of group A and B dications on 
DNA. 

In summary, the synthesis and interaction specificity of 
aromatic substituted dications with DNA have been exam­
ined. It is shown via the use of pmr spectroscopy and visco­
metric titration studies that significantly different effects on 
the tertiary structure of DNA may be caused by slight 
modifications of small molecules. The results can be satis­
factorily explained in terms of a reasonable model. 
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These two components are 6- and 14-fold, respectively, 
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the C10H11CI7 component and fourfold for the CioHioCls 
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Experimental Section 

The heptachlorobornane was isolated by use of a partition col­
umn with (3-methoxypropionitrile and heptane, followed by a silica 
gel-hexane absorption column. A repetition of these two steps in 
sequence was followed by preparative gc; the component was fur­
ther purified by crystallization.3b 

A Varian HR-100 equipped with an internal field-frequency 
lock provided 100-MHz proton magnetic resonance (pmr) spec­
tra.4 To clearly resolve the weaker peaks of complex multiplets, it 
was necessary to average as many as 200 scans using a 1000-chan-
nel time-averaging computer. Overlapping peaks constituted a 
major problem which was minimized through the use of carbon 
tetrachloride as the solvent. However, the doublet-split triplet res­
onance of H(4) is almost completely obscured in this solvent while 
it is resolved clearly in acetone. No unassigned impurity reso­
nances could be detected in the spectral range of 2.3-4.8 ppm. It is, 
therefore, estimated that the isomeric purity of this compound ex­
ceeded 98%. High field resonances arising from the gc column 
coating or the crystallization solvents appeared to varying extents 
in different preparations. 

Crystals suitable for X-ray analysis were grown from hexane-
ether in the ratio of 5:1. The crystals were colorless prisms elongat­
ed along c. Weissenberg and precession photographs were used to 
determine the unit cell dimensions and space group. The unit cell is 
orthorhombic; the only systematic absences were(h 00), (OkO), 
and (00/) when h, k, and / were odd. The crystallog'raphic data 
are summarized as follows: C10H11CI7, formula wt = 379.37, or­
thorhombic, space group P2\2\2U a = 8.603 ± 0.005 A, b = 
21.384 ± 0.009 A, c = 7.608 =fc 0.005 A, Z = 4, F(OOO) = 760, Pc 

= 1.80 gem"3, X(Cu Ka) = 1.5418 A, M = 127 cm"1 (for Cu Ka). 
The density of the crystal could not be measured accurately be-
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Abstract: Toxaphene insecticide contains over 175 distinct Cio-chloro compounds. Two of the components, one a CioHjoClg 
compound and the other a C10H11CI7 compound, appear to contribute more than any others to the acute toxicity of toxa­
phene to mice treated intraperitoneal^. The structure of the C10H11CI7 component has been determined by X-ray methods. 
The crystals are orthorhombic, space group P2\2\2\, a = 8.603 A, b = 21.384 A, c = 7.608 A, and Z = A. Data were collect­
ed with an automatic diffractometer, over one-quarter of the reflection sphere with Ni-filtered, Cu Ka radiation. The mole­
cule is 2,2,5-en</o,6-exo,8,9,10-heptachlorobornane; the bond angles and distances agree with published values for similar 
compounds. The 100-MHz proton magnetic resonance spectrum of this compound has been analyzed and is shown to be 
completely consistent with the X-ray deduced structure. Several spin-spin couplings are discussed in relation to this struc­
ture. No isomeric impurities were detected. 
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